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A simple model of the plane gas bubble in a finite liquid 

By R. COLLINS 
Department of Mechanical Engineering, University College London 

(Received 11 December 1964) 

Using a method due to Davies & Taylor (1950), a simple model is employed to 
derive the velocity of a two-dimensional gas bubble rising in liquid along the 
axis of a channel of finite width. The asymptotes of the solution agree well with 
previous results and an experimental investigation confims the effect of channel 
width on bubble velocity. Measured values of velocity are, however, approxi- 
mately 9 yo higher than theoretical values due to the three-dimensional nature of 
the real flow. 

1. Introduction 
The study of large gas bubbles rising in liquids has been recently stimulated 

by a remarkable analogy described by Davidson & Harrison (1963). They have 
shown that a bubble rising in a bed of solid particles fluidized* by the vertical 
flow of gas through it, appears to  behave like a gas bubble rising in a liquid. 
Results obtained for gas-liquid systems, such as those of Davies & Taylor (1950) 
relating to the spherical-capped bubble in an infinite region of liquid, and of 
Dumitrescu (1943) for the rise of infinitely long bubbles in tubes, can therefore 
be applied to the fluidized state. The establishment of the analogy relies on the 
application of an empirical correction, due to Uno & Kintner (1956), for the effect 
of a containing cylindrical boundary on bubble velocity. Since an infinitely 
long bubble can be regarded as being produced when the cylinder diameter 
becomes sufficiently small, a theoretical expression for this correction would have 
as its asymptotes the known solutions of Davies & Taylor and of Dumitrescu. 
The complexity of the latter’s solution appears to eliminate the possibility of 
finding an exact theoretical expression linking these two limits. It is possible, 
however, to generate an approximate solution for the two-dimensional problem 
using the method of Davies & Taylor. This problem is of interest because two- 
dimensional beds have been used extensively in fluidization studies. In  applying 
Davidson’s (1961) model of the fluidization bubble to finite beds, Collins (1965) 
has shown that, under certain conditions, a single bubble on the axis of a finite 
bed can capture all of the gas flowing into the bed. The solution of the problem 
considered here is necessary in order to  calculate bubble sizes capable of producing 
this phenomenon. 

* The object of the fluidization process, which is widely used in the chemical engineering 
industry, is to obtain intimate contact between gas and solid in order to promote heat 
transfer, maes transfer, or catalytic reaction. A study of bubble behaviour is necessary 
to determine how the efficiency of the process is affected by their appearance. 
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With the assumptions that viscous and surface-tension forces are insignificant 
in comparison with inertia forces, and that the gas pressure is constant within 
the bubble, several theoretical results are known. Applying Bernoulli’s equation 
to the streamline forming the bubble boundary, it is found that the constant- 
pressure condition is satisfied if the velocity q at a point on the boundary a 
vertical distance s below the front stagnation point is given by 

q 2  = 298, (1) 

where g is the acceleration due to gravity. A complete analysis would give the 
bubble boundary as part of the solution, but in both two dimensions and three 
dimensions this presents a considerable problem. Davies & Taylor neatly 
avoided this difficulty. In  their method the bubble velocity was taken to be that 
which satisfied equation (1) only at  the front stagnation point, and they assumed 
that the flow in that region was described by the irrotational flow past a sphere 
having the same curvature. This approach gave the velocity of a spherical- 
capped bubble in an infinite liquid as 

where a is the radius of curvature at  the front stagnation point. Davies & Taylor 
showed experimentally that equation (2) relates U and a very well for large air 
bubbles in water and nitrobenzene. The corresponding result for the plane bubble 
was not derived in their paper but may be shown to be 

Urn = 0 * 5 ( g ~ ) + .  (3) 

Davies & Taylor also gave an approximate result for the velocity of an in- 
hi te ly  long bubble in a fluid contained within a circular tube, but Dumitrescu’s 
analysis is usually considered a better approximation. He gave 

V, = 0*495(gb)*, (4) 

where b is the tube radius. Nicklin, Wilkes & Davidson (1962) have shown em- 
pirically that once a bubble in a tube is longer than about one tube diameter, 
its velocity is independent of its length and is given by equation (4). Such bubbles 
are called slugs. Slugs of differing lengths are found to have geometrically similar 
caps and the ratio a/b approaches a constant limiting value less than unity. The 
equivalent plane case was discussed by Garabedian (1957) who derived 

U, = 0*337(gb)*, ( 5 )  

while Birkhoff & Carter (1956) gave a constant of 0.33 f 0.01. By analogy with 
the three-dimensional case, equation ( 5 )  is expected to apply to the plane slug, 
and equations (3) and (5) should thus be the asymptotes of the two-dimensional 
solution. 

2. The model 
Consider the flow system shown in figure 1 (a) ,  which will be taken to model the 

flow over the bubble shown in figure 1 (b) .  Axes are fixed on the cylinder which 
rises with velocity U .  Lamb’s (1932) equation for the complex potential of the 
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flow of a uniform stream past a nearly circular body in a channel may be written 
in the modified form 

where z = x + iy, and the function (2b/77) sinh2 (rc/2b)  ensures that the body is 
of length 2c for all values of c/b.  The streamline @ = 0 enclosing the body has 

7TC 
the equation 

z-i?+- coth--cothT 1Tz sinh2% = 0, 
2 b [  7T 2b 2b 

where a bar denotes the complex cunjugatc 
values of c/b from zero to approximately 0.5. 
axis z = 2 as one root. 

f 

Y -0 1 I I 

(7) 

and it is remarkably circular for 
Zquation (7) also contains the real 

t > 
2 b  

FIUTJRE 1. The flow model of the cylindrical-capped bubble in a channel. 

The radius of curvature a of the body at its front stagnation point may be 
derived from equation (7) as 

a 6b tanh (nc/2b) 
c 
- =  

nc[3 - t a d 2  (nc/2b)] ' 

Figure 2 reveals that, until c /b  exceeds 0-4, the radius of curvature a is sensibly 
constant and equal to c, and further, that for values of c/b > 2, a /b  = 3/n = 0,965. 

In complex-variable terms, the condition for constant pressure becomes 

q2 = g(2c-z-Z), 
and from equation (6) 

(9) 
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where, in both equations, x and X are related by equation (7). Using the method 
of Davies & TayIor, the rise velocity is determined by 

g(2c - 2 - Z) 
U2 = lim 

z--tc [ 1 - sinh2 (7rc/2b) cosech2 (772/2b)] [l - sinh2 (nc/2b) cosech2 (77X/2b)] ’ 
(11) 

where the limit is approached along the bubble boundary given in equation (7). 
It is convenient to write equation (6) as 

so that equation (7) becomes 

which may be expressed in the alternative form 

w = Ut(z) ,  (12) 

(13) 

2 = f(2). (14) 

t (2 )  - t ( Z )  = 0, 

clb 
FIUURE 2. The radius of curvature at the front stagnation point of 

the model. - - - -, a/c = 3b/.rro; -, equation (8). 

Denoting differentiation with respect to the argument of a function by a prime, 
equation (10) becomes 

and equation (1 1) may thus be written as 
q 2  = uz[t’(z)12/f t(47 (15) 

The limit is evaluated by expanding the functions appearing in it about the 
front stagnation point. Since f ( c )  = c ,  t’(c) = 0 and f ’ ( c )  = - 1 evaluated along 
the closed branch of the zero streamline, it is found that 



A plane gas bubble in a finite liquid 767 

Manipulation of equations (13)  and (14) ,  involving the evaluation of a further 
limit, gives 

so that 

f"(C) = -- - 
3 "rl t" e '  

Evaluation of t"(c) and t"(c) for the chosen model produces 

From this equation it can be seen that, as c/b -+ 0,  U -+ Urn = O.B(ga)*, and that 
as c /b  -+ co, U + V,  = (gb/3n)* = 0*326(gb)*. Thus the solution agrees well with 
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FIGURE 3. Variation of bubble velocity with alb. 

the required asymptotes, the result for the slug being less than 3.5 % below Gar- 
abedian's and falling within the range of error of that due to Birkhoff & Carter. 
It is rather surprising that such a simple model agrees with the slug limit for it 
certainly does not describe the flow away from the stagnation point when the 
bubble is very long. It gives an almost constant velocity near the walls whereas, 
for the true boundary, the fluid should be falling freely there. 

The parameter G may be eliminated from equations (8) and (20 )  to give 

or Urn = " J [ 3 + ( $ ) a ] - 6 ( A ) 2 ,  na 

where U, = (gb/3n)* and Urn = O.S(ga)*. Equations (21)  and (22)  are plotted in 
figure 3 together with points obtained from experiments with air bubbles rising 
through water. 
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3. Experiments 
The apparatus, shown in figure 4, consisted of two acrylic plates $in. thick 

and 3 ft. square separated by rubber-covered spacers, &in. thick. The edges were 
sealed and distortion of the plates was minimized by clamps. The effective width 
of the tank could be varied by moving two false walls within the gap, the clamps 
also ensuring that there was no leakage past these walls during bubble motion. 
In the centre of the base of the tank was a one-way valve, the outlet of which 
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FIGURE 4. Experimental tank. 
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was covered by two rubber flaps butted over the valve centre line. These en- 
sured a sharp cut-off when air was injected from a hand pump, and produced a 
bubble with few satellites. With the walls at their widest separation of 33in., 
bubble sizes ranged from a = 1.5 in. to a = 3-5 in. 

A linen screen ruled'with a B i n .  grid covered one face of the tank and was 
illuminated uniformly from behind so that the bubble margin appeared dark 
against this background. A transparent circular protractor rotating at  0.5 rev/ 
sec and also illuminated via the linen screen provided a time scale. Two photo- 
graphs taken with a 35mm reflex camera and separated by an interval of 
approximately 0.5 see thus provided sufficient information to determine bubble 
velocity and radius of curvature at  the front stagnation point. The latter 
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measurement was taken by projecting a magnified image of the bubble on a screen 
and comparing with a standard set of circular arcs. The angle 8 subtended by the 
bubble extremities at the centre of curvature was also measured. Due to the 
change in hydrostatic pressure a bubble expands slightly during its upward 
motion, so that the mean value of radius of curvature from a pair was taken. 
By its nature, the method of velocity measurement gave an average value over a 
distance of approximately 6in. The initial photograph was taken when the 
bubble reached the horizontal centre line of the tank; a typical pair is shown in 
figure 5 (plate 1). 

While it is apparent from figure 3 that the predicted variation with alb was 
confirmed, the measured velocities were consistently higher than those given by 
the model by approximately 9%. Experimental values for the limits were 
U, = 0*545(ga)*, and U, = 0.35(gb)# and these were the values used in plotting the 
experimental points in figure 3. The most likely reason for the discrepancy can 
be seen in figure 5, in which the inherent three-dimensional character of the bubble 
is evident from the distortion of the scale through its cap. There was inevitably 
some flow between the bubble and the faces of the tank and two-dimensional 
conditions were not produced. In  figure 6 the real bubble and a two-dimensional 
model of the same radius of curvature are compared. The effect of the flow 
down the tank faces is slightly to reduce the velocity at a point such as A on the 
stagnation streamline below the value it would have had at the corresponding 
point A’ on the two-dimensional model. If the velocity distribution near the 
stagnation point on the stagnation streamline retains the same form* as on the 
two-dimensional model then the local velocities would be given by 

where k, < 1. It follows from equation (19) that, in order to satisfy the constant- 
pressure condition, the bubble velocity would be U = U,/k, > U,, the variation 
of U with ajb remaining unchanged. An increase in bubble velocity of 9 yo would 
require a reduction in local velocities of only 8 %. A paradox now arises. The two- 
dimensional theory should also apply to the flow in a vertical plane normal to the 
tank faces and through the stagnation point. On this basis the bubble velocity 
should be U = (gd/3n)J where 2d is the gap width separating the tank faces. In  
this apparatus d = &in. so that this velocity is much lower than any measured 
velocity, and exhibits no variation with a/b. The paradox is resolved by an exten- 
sion of the previous argument. If the local velocities on the streamline SE are 
reduced only slightly by the presence of flow on SF then conversely, local velo- 
cities on SF would be very greatly reduced below two-dimensional values by the 
presence of flow on BE. Assuming the velocity distribution near the stagnation 
point on SF to be given by an equation of the form of equation (10) with b re- 
placed by d, the multiplying constant k, needed in this ca8e would be such that 
k, < 1. It follows again from equation (19) that in order to satisfy the constant 
pressure condition, U = (gd/3n)*/k2 (gd/3n)*. The bubble presumably adjusts 
its shape, and hence k, and k, so that the constant pressure condition can be 
satisfied simultaneously on SF and SE a t  the same bubble velocity. When 

* This assumption preserves the two-dimensional variation of W with a/b as the experi- 
ments confirm. 

4 = k, ~t’(~)/{f’(4)4 

49 Fluid Mech. 22 
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the bubble fills the channel and forms a slug k, and Ic, will be determined by 
the aspect ratio of the channel cross-section bid. From the preceding argument 
the effect of flow down the tank faces would be expected to be more significant at 
low aspect ratios, and this is confirmed by experimental results for slugs in 
tubes of rectangular cross-section 4in. x 1 in. reported by Birkhoff Q Carter. 
They gave U = 0*41(gb)* which is 25% above their own theoretical result. 
Their aspect ratio of 4 should be compared with the minimum of 10 used in the 
present experiments. 

E 

FIUTJRE 6. Comparison of the real bubble with a two-dimensional model. 

A second feature of figure 3 is that the maximum value of alb = 0.955 allowed 
by the model was not realized physically, the maximum observed value being 
0.64. While this must be regarded as a deficiency, it should be noted also from 
figure 3 that transfer of control from bubble dimension to channel dimension is 
virtually complete for values of a / b  > 0.7; at a/b = 0.7, U = 0*32(gb)*, which 
is less than 2 %  below its limiting value. A series of photographs depicting 
transition from the cylindrical-capped form to the slug form is reproduced in 
figure 7 (plate 2) which shows also the remarkably circular appearance of the cap 
for values of a / b  below 0.5. Like their three-dimensional counterparts, two- 
dimensional slugs were found to be geometrically similar near their stagnation 
points, and the velocity of a slug in a given channel was independent of its 
length. Despite the high scatter, produced because of the difficulty in dehing 
bubble extremity when a satellite is attached as in figure 7 (c), figure 8 indicates 
how the measured angle subtended at the centre of curvature of the stagnation 
point changes during transition to the slug form. In  an infinite liquid this angle 
is approximately 105", while Davies & Taylor found angles of approximately 
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100' for the spherical-capped bubble. The two-dimensional slug appears to 
assume a limiting value of a/b = 0.62 in figure 8. Birkhoff & Carter quote a 
value of N 0.7 for the rectangular tube of aspect ratio 4. 
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FIGURE 8. Variation of measured included angle with a/b. 

4. Concluding remarks 
Although it appears to be impossible to generate a bubble which is truly 

two-dimensional, the variation of velocity with a/b determined experimentally 
was described well by equations (21) and (22). The three-dimensional character 
of the real flow caused experimental values of velocity to be 9 yo higher than those 
given by the two-dimensional model. 

The author is indebted to Mr D.R.Allen of the Department of Mechanical 
Engineering, University College London, for his photographic skill. 
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